
Exploring Depth-First Search for Maze Generation
and A* for Maze Solving

Nick Abegg nicholas.abegg@stvincent.edu

Jake Buhite jake.buhite@stvincent.edu

I. PROBLEM SUMMARY

Maze generation is often used in fields such as robotics
and entertainment. Often it is not convenient or reasonable
to generate mazes manually due to the time or tedium of
generating mazes that vary in design and size. Having a
method of generating mazes automatically allows for not only
diversity amongst generated mazes but also the ability to do so
in significantly less time. We utilized a randomized iterative
depth-first search algorithm to automatically generate mazes.
The simplicity of the algorithm allows for fast generation while
still producing diverse results.

II. LITERATURE OVERVIEW

A. Randomized Depth-First Search

Randomized depth-first search has been utilized before
when generating mazes automatically. Research has demon-
strated that the algorithm is capable of guaranteeing complete
maze traversal. This ensures that none of the generated mazes
are unsolvable and that they all have a solution. This is due
to the nature of depth-first search and that it explores every
node in the generated maze [1].

Pseudocode Recursive Depth-First Search [1]

function GENERATE-MAZE(cell):

MARK-CELL-VISITED(cell)

neighbors =

UNVISITED-NEIGHBORS(cell)

if neighbors is not empty:

neighbor = RAND-NEIGHBOR(neighbors)

PUSH-STACK(neighbor)

REMOVE-WALL(cell, neighbor)

cell = neighbor

GENERATE-MAZE(cell)

else:

previousCell = POP-STACK()

cell = previousCell

GENERATE-MAZE(cell)

Note that while this algorithm utilizes recursion, our maze
generator algorithm will implement an iterative form of depth-
first search in which no recursion is needed.

B. Real World Application in Video Games

A real-world application of automated maze generation is
in video game autonomous character path-finding. Video game
Artificial Intelligence requires path-finding for navigating non-
player characters throughout a game world. Calculating the
best path for the character to take within reasonable compu-
tation time under restricted resources of memory and CPU is
rather challenging. Path-finding problems in video games can
often be represented, explored, and solved as mazes. Therefore
investigating automated maze generation techniques such as
Iterative Depth-First Search can result in improvements to
video game artificial intelligence [2].

III. ALGORITHM DESCRIPTION

The two algorithms used for maze generation and solving
include iterative depth-first search and A*, respectively.1 These
algorithms consist of significant differences in their behaviors,
as iterative depth-first search is a form of uninformed search,
while A* falls under the category of informed search [3]. As
a result, each algorithm is expected to display different traver-
sal behavior and varying runtime and memory performance
compared to the other.

A. Maze Generator: Iterative Depth-First Search

1) Algorithm Description: Iterative depth-first search is a
search algorithm that utilizes randomization and a stack to
traverse the depth of the maze [1]. For each iteration, the
popped cell is used to determine which neighbors around the

1Code for both the algorithms and the data collection process can be found
here: https://github.com/jakebuhite/maze-generator-solver.

1

https://github.com/jakebuhite/maze-generator-solver


cell have not been explored. It randomly selects one of these
neighbors and removes the wall between the current cell and
the chosen neighbor. The chosen neighbor will then be pushed
to the stack, popped in the next iteration, and used to determine
which of its own neighbors have not been explored. If a popped
cell’s neighbors have all been explored, the search algorithm
backtracks until it finds a cell that has an unexplored neighbor.
This continues until all of the nodes have been explored.

2) Pseudocode Iterative Depth-First Search:

function GENERATE-MAZE(maze):

Initialize an empty stack

MARK-CELL-VISITED(maze[start])

PUSH-STACK(maze[start])

while stack is not empty:

current = POP-STACK()

nbr = RAND-NEIGHBOR(current)

if nbr is not None:

PUSH-STACK(current)

REMOVE-WALL(current, nbr)

MARK-CELL-VISITED(maze[nbr])

PUSH-STACK(nbr)

3) Data Analysis: One of our experiments consists of the
generation of mazes with various dimensions. The expected
runtime complexity of depth-first search is O(bd), where b

represents the number of edges that leave a node [3] and
d represents the maximum depth in which the algorithm
will travel until it reaches a cell that has no unexplored
neighbors. For space complexity, iterative depth-first search
has an expected upper bound of O(bd). In this case, the
branching factor of each node is dependent on the number of
neighboring cells that have not been visited at each cell in the
maze, while d increases as the maze size increases. As shown
in Fig. 2, the maze generator appears to have an exponential
runtime. Similarly, Fig. 4 appears to demonstrate exponential
space complexity as the maze sizes increase. Therefore, our
findings support the expected asymptotic runtime but do not
support the asymptotic space complexity for iterative depth-
first search.

B. Maze Solver: A*

1) Algorithm Description: The A* search algorithm is a
complete and optimal algorithm that finds the shortest path
in a maze from the starting cell to the goal cell [3]. One

dictionary manages the path costs (g(n)) of each cell, while
another manages the sum of heuristic costs with path costs, or
f(n). Both are initialized with a value of infinity for each cell.
Beginning with the starting cell, the search algorithm retrieves
the cell with the lowest f(n) from the priority queue. If the
current cell is the goal cell, the loop terminates. Otherwise, it
checks all possible directions to determine which neighbors
of the current cell are valid paths. For each valid path, it
calculates its new f(n) by adding its path cost to the newly
calculated heuristic cost. The heuristic used for calculating
heuristic cost is Manhattan distance, which is the sum of the
number of horizontal and vertical movements needed to reach
the goal cell [3]. If this value is less than its previous value, the
neighbor’s g(n) and f(n) are updated, and the neighbor is added
to the priority queue. Furthermore, the neighbor and its parent
cell are added to a dictionary responsible for managing the
parent cells of each cell. The loop continues until the frontier
is not empty or the goal node is found. Finally, the algorithm
traverses the parent-child dictionary to visited and mark each
cell of the solution path in the maze.

2) Pseudocode A* Search [4]:

function SOLVE-MAZE(maze):

gn, fn = {cell: INF for cell in maze}

gn[start] = 0

fn[start] = HEUR(start, goal)

frontier = PRIORITY-QUEUE()

frontier.INSERT((fn[start], start))

path = {}

while frontier is not empty

current = frontier.POP().second

if current equals goal: break

for dir in POSSIBLE-DIRECTIONS()

dx = current.x + dir.x

dy = current.y + dir.y

nbr = Cell(dx, dy)

updatedG = gn[current] + 1

if updatedG < gn[nbr]

gn[nbr] = updatedG

fn[nbr] = updatedG

+ HEUR(nbr, goal)

frontier.INSERT((fn[nbr],

nbr))

path[nbr] = current

2



cell = goal

while cell is not start

MARK-CELL-VISITED(cell)

cell = path[cell]

MARK-CELL-VISITED(start)

3) Data Analysis: Like iterative depth-first search, our
experiment for A* search includes collecting the runtime and
memory usage of maze solving with increasing maze sizes.
The expected runtime and space complexity of A* search
is O(bd), where b represents the possible directions that can
be traversed (up to 4) and d represents the number of steps
required to reach the goal cell. As shown in Fig. 4 and
5, the runtime and memory usage of A* search appear to
grow exponentially as the maze size increases. Therefore, our
findings support the expected asymptotic runtime and space
complexity of A* search.

C. Example Generated & Solved Maze

Fig. 1. 5x5 Generated and Solved Maze

Fig. 1 displays a simple 5x5 maze generated by iterative
depth-first search and solved by A*. Notice each square of
the maze represents one cell in the 5x5. The solution path,
found by A*, is marked by the P’s. The start of the maze is
the top left cell, and the ending or ”goal” is the bottom right
cell.

IV. TESTING & DATA

We conducted two separate experiments with different di-
mensions tested within each of the experiments. Each experi-
ment iterated through dimensions as follows:

• 5x5 - 100x100 increment x and y by 5
• 100x100 - 1000x1000 increment x and y by 100
• 1000x1000 - 10000x10000 increment x and y by 1000

This resulted in a total of 40 test for each experiment. In our
test we measured the both the runtime & memory usage for
both the maze generator and the maze solver.

A. Maze Generator Data

Fig. 2. Runtime of the Maze Generator using Iterative Depth-First Search

Here, in Fig. 2 we observe a exponential runtime which is
expected for Iterative Depth First Search.

Fig. 3. Space Complexity of the Maze Generator

Notice there seems to be a peak in memory usage at
9000x9000 and 10000x10000. It is highly possible that the
higher dimensions have reached a particular threshold wherein
our computer’s available memory is maximized. This leads to
the plateauing that is shown on the far right of Fig. 3.

3



B. Maze Solver Data

Fig. 4. Runtime of the Maze Solver using A*

The runtime in 4 is clearly exponential. A* is

Fig. 5. Space Complexity of the Maze Solver

There also seems to be a similar trend to iterative depth-
first search for memory usage in terms of the plateauing that
occurs.

V. CONCLUSION

Automated maze generation using the randomized iterative
depth-first search algorithm provides a simple solution to the
problem of manually creating mazes of varying sizes. The
ability to generate mazes automatically not only saves time
but also ensures the creation of solvable and unique mazes.
The A* search algorithm, while more complex than depth-
first search, provides a complete and optimal methodology for
obtaining the path from the start cell to the end cell of the
maze.

The experiments conducted for the maze generator and
solver support the expected asymptotic runtime and space
complexity of these algorithms in all cases but the space
complexity of the maze generator. Our findings demonstrate
exponential runtime and space complexity for both maze

generation and solving. While this is expected of A* search,
iterative depth-first search is expected to have a linear space
complexity. The reason for this significant increase in memory
usage may be a result of the tool used to obtain memory
usage metrics. It may also be possible that Python allocates
additional resources to ensure that larger and more populated
data structures have enough memory to maintain data. Addi-
tional exploration can include exploring the potential in SMA*
and other search algorithms for solving larger mazes more
efficiently.

The collection of data during the experiments conducted
led to the discovery of variations in algorithmic performance
between the two computers used for data collection. While
it has not been determined whether this was a result of the
environment chosen (Python) or the utilities used to collect
data, future analysis should examine the effects of hardware
on the runtime of the maze generator and solver. To maintain
the integrity of our data, only data collected from one of the
computers was used for analysis.

One potential area that could use additional exploration is
the heuristic used in the A* search algorithm of the maze
solver. While our current implementation of A* utilizes Man-
hattan distance, other heuristics may provide more efficiency
and better performance when searching for the optimal path.

Another potential area that could be examined more in-
depth is the types of mazes generated and solved. Our current
implementation of maze generation and solving only supports
rectangular mazes. However, adding support for circular or
multidimensional mazes may provide more insight into the
performance of these algorithms when used in the context of
more complex maze designs.

Overall, this exploration provides further insight into the
expectations of the performance and usability of iterative
depth-first search for maze generation and A* search for maze
solving in fields such as robotics, puzzles, and video games.
Our findings provide a foundation for supporting further ex-
ploration of other algorithms for generating and solving mazes.
Further investigation is necessary for a more comprehensive
understanding of utilizing hardware of varying specifications,
different search algorithms for generation and solving, efficient
heuristics for maze-solving and the utilization of these search
algorithms in other types of mazes.

4



REFERENCES

[1] S. H. Shah, J. M. Mohite, A. G. Musale, and J. L. Borade, “Survey paper
on maze generation algorithms for puzzle solving games,” International
Journal of Scientific & Engineering Research, vol. 8, no. 2, p. 4, Feb.
2017.

[2] N. H. Barnouti, S. S. M. Al-Dabbagh, and M. A. S. Naser, “Pathfinding
in strategy games and maze solving using a* search algorithm,” Journal
of Computer and Communications, vol. 04, no. 11, pp. 15–25, Jan. 2016.

[3] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Pearson, 2009.

[4] X. Cui and H. Shi, “A*-based pathfinding in modern computer games,”
International Journal of Computer Science and Network Security, vol. 11,
no. 01, pp. 125–130, Jan. 2011.

5


	Problem Summary
	Literature Overview
	Randomized Depth-First Search
	Real World Application in Video Games

	Algorithm Description
	Maze Generator: Iterative Depth-First Search
	Algorithm Description
	Pseudocode Iterative Depth-First Search
	Data Analysis

	Maze Solver: A*
	Algorithm Description
	Pseudocode A* Search CuiShi2011
	Data Analysis

	Example Generated & Solved Maze

	Testing & Data
	Maze Generator Data
	Maze Solver Data

	Conclusion
	References

